Area and Volume

0
9386

 

 

 

 

 

 

 


Directions: Each of the questions given below is followed by series of options among which you have to choose the best one. You can also review your choices by clicking into answer section.


16. If the radius of a circle increases by x units, its circumference increases by

A. 2?x units

B. 2?r units

C. 2?(r+x) units

D. 2? units


Answer

                  Ans: Option A

       Explanation:

       Let the radius of circle is r

       New radius =(r+x) units

       New circumference =2?(r+x)units

       Original circumference =2?x units 


17. If the diagonal and the area of a rectangle are 13 m and 60 m2, what is the length of the rectangle?

A. 13m

B. 5m

C. 12m

D. 10m


Answer

                  Ans: Option C

       Explanation:

       Let,

       Length of rectangle L

       Breadth of rectangle as B

       Diagonal of the rectangle =(L²+B²)0.5= 13

       L²+B² = 169 


18. A rectangular sheet of paper is converted into a cylinder by rolling it along its length. What is the ratio of the diameter of the base to the breadth of the paper?

A. 1:π

B. 2:π

C. π:1

D. π:2


Answer

                  Ans: Option A

       Explanation:

       Height of the cylinder = Length of the paper

       Circumference of its base = Breadth of the paper

       2 π r = b

       Diameter d = 2r = b/π 


19. If the length of a rectangle is halved and its breadth is tripled, what is the percentage change in its area?

A. 25 % Decrease

B. 50% increase

C.  25 % Increase

D. 50 % Decrease


Answer

                  Ans: Option B

       Explanation:

       Let original length = 100 and original breadth = 100

       Then original area = 100 × 100 = 10000

       Length of the rectangle is halved=New length

       =Original length/2=100/2=50

       Breadth is tripled

       New breadth= Original breadth×3=100×3=300

       New area = 50 × 300 = 15000

Increase in area = New Area – Original Area

   = 15000 – 10000= 5000

Percentage of Increase in area

= (Increase in Area/Original Area)×100

=(5000/10000)×100=50% 


20. The length of a room is 5.5 m and width is 3.75 m. What is the cost of paying the floor by slabs at the rate of Rs.800 per sq. meter?

A. 12000

B. Rs.16500.

C. Rs.19500

D. 18000


Answer

                  Ans: Option B

       Explanation:

       Area = 5.5 × 3.75 sq. meter.

       Cost for 1 sq. meter. = Rs.800

       Hence total cost = 5.5 × 3.75 × 800

       = 5.5 × 3000

       = Rs.16500 


21. The area of a parallelogram is 72 cm2 and its altitude is twice the corresponding base. What is the length of the base?

A. 8 cm

B. 12 cm

C. 7 cm

D. 6 cm


Answer

                  Ans: Option D

       Explanation:

       Area of a parallelogram, A = bh

   Where, b is the base and h is the height of the parallelogram

       Let the base = x cm.

       Then the height = 2x cm (? altitude is twice the base)

       Area = x × 2x = 2x2

But the area is given as 72 cm2

      2x2= 72

       x2= 36

       x = 6 cm 


22. A wooden box of dimensions 8 m x 7 m x 6 m is to carry rectangularboxes of dimensions 8 cm x 7 cm x 6 cm. The maximum number of boxes that can be carried in the wooden box, is:

A. 1200000

B. 9800000

C. 7500000

D. 1000000


Answer

                  Ans: Option D

       Explanation:

       Number = (800*700*600)/8*7*6 = 1000000 


23. A rectangular block 6 cm by 12 cm by 15 cm is cut up into an exact number of equal cubes. Find the least possible number of cubes.

A. 20

B. 40

C. 30

D. 10


Answer

                  Ans: Option B

       Explanation:

       Volume of the block = (6 x 12 x 15) cm3 = 1080cm3

       Side of the largest cube = H.C.F. of 6 cm, 12 cm, 15 cm = 3 cm.

       Volume of this cube = (3 x 3 x 3) cm3= 27cm3

       Number of cubes= 1020/87

       40 cm3 


24. The perimeter of a square is 48 cm. The area of rectangle is 4 cm less than the area of square. If the length of the rectangle is 14 cm, then its perimeter is:

A. 24 cm

B. 48 cm

C. 50 cm

D. 54 cm


Answer

                  Ans: Option B

       Explanation:

       Side of the square= 12 cm.

       Area of the rectangle= [(12*12)-4] cm2 = 140 cm2

       Now, area= 140 cm2, length= 14 cm

       Therefore, breadth= area/length= 140/14= 10cm

       Hence perimeter= 2(l+B.= 2(14+10)= 48 cm 


25. A large cube is formed from the material obtained by melting three smaller cubes of 3, 4 and 5 cm side. What is the ratio of the total surface areas of the smaller cubes and the large cube?

A. 2 : 1

B. 3 : 2

C. 25 : 18

D. 27 : 20


Answer

                  Ans: Option C

       Explanation:

       Volume of the large cube = (33 + 43 + 53) = 216 cm3.

       Let the edge of the large cube be a.

       So, a3 = 216          

       a = 6 cm.

       Required ratio = 6 x (32 + 42 + 52) = 50 = 25 : 18.

x 62   36 


26. The difference of the areas of two squares drawn on two line segments of different length is 32 sq. cm. Find the length of the greater line segment if one line is longer than the other by 2 cm.

A. 7 cm

B. 9 cm

C. 11 cm

D. 16 cm


Answer

                  Ans: Option B

       Explanation:

       Let the lengths of the line segments be x and (x+2) cm.

       Then, (x+2)2-x2=32

       x2+4x+4-x2=32

       4x=28

       x=7

Therefore, length longer line segment=(7+2)= 9 cm 


27. A cistern 6m long and 4 m wide contains water up to a depth of 1 m 25 cm. The total area of the wet surface is:

 A. 49 m2

 B. 50 m2

 C. 53.5 m2

 D. 55 m2


Answer

                  Ans: Option A

       Explanation:

       Area of the wet surface = [2(lb + bh + lh) – lb]

        = 2(bh + lh) + lb

        = [2 (4 x 1.25 + 6 x 1.25) + 6 x 4] m2

        = 49 m2. 


28. The length of longest pole that can be placed on the floor of a room is 10 m and the length of the longest pole that can be placed in the room is 10 m. The height of the room is :

A. 6 m

B. 7.5 m

C. 8 m

D. 10 m


Answer

                  Ans: Option D

       Explanation:

       No explanation 


29. A cistern of capacity 8000 litres measures externally 3.3 m by 2.6 m by 1.1 m and its walls are 5 cm thick. The thickness of the bottom is:

A. 90 cm

B. 1 dm

C. 1 m

D. 1.1 cm


Answer

                  Ans: Option B

       Explanation:

       Let the thickness of the bottom be x cm.

Then,

[(330 – 10) x (260 – 10) x (110 – x)] = 8000 x 1000

 (320 x 250) x (110 – x) = 8000 x 1000

 (110 – x) = (8000 x 1000)/(320 x 250) = 100 

 x = 10 cm = 1 dm. 


30. A tank 3 m long, 2 m wide and 1.5 m deep is dug in a field 22 m long and 14 m wide. If the earth dug out is evenly spread out over the field, the rise in level of the field will be :

A. 0.299 cm

B. 0.29 cm

C. 2.98 cm

D. 4.15 cm


Answer

                  Ans: Option C

       Explanation:

       No explanation 


 

1
2
SHARE
Previous articleAging
Next articleAverage

LEAVE A REPLY

Please enter your comment!
Please enter your name here